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Review from the earlier presentation. 
In our examination of the Linear Pool – combining probabilistic opinions into a 

convex combination of those distributions – we illustrated its failure to be 

“Externally Bayesian.”  There two experts judged events A and S independent, 

Pi(AS) = Pi(A)Pi(S) for i = 1, 2.  But the Linear Pool created a group opinion 

P3 with positive dependence.  P3(A|S) > P3(A).   

• Pooling and conditioning do not commute! 
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The experts agree that T3 is inadmissible in this three-way choice,  

because of their unanimity about the irrelevance of {S, S
c
}. 

 

However, neither T1 nor T2 is Pareto superior to T3.  

 

There is no one alternative to T3 that the experts agree is better. 

 

A lesson to be learned is that: 

• Pairwise comparisons between options is insufficient for determining 

a consensus among Bayesian agents. 

 

The decision theory for Bayesian consensus does not begin with a binary 

relation of preference. 
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What follows in this presentation 

 

Part 1:  Outline of a theory of coherent choice for use with IP models of 

consensus for a team.   

 Axiomatic representation of a coherent choice function. 

 

Part 2: Some issues of experimental design within this model of 

consensus 

 

 2.1  Summary of an adaptive clinical trial following this model. 
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Consider a cooperative group of Bayesian decision makers who have 
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Given a (closed) set O of feasible options, a choice function C identifies 

the set A of acceptable options C[O] = A, for a non-empty subset A  O. 

 

• A choice function C is coherent across a class of problems if there is a 

set of probabilities P such that acceptable options are P –Bayes. 

 

An option is acceptable, o  A (= C[O]), just in case o is a Bayes solution 

to problem O for some P  P.  

 

 
Aside:  There may be no acceptable option if the option set is not closed, e.g., 

there is no “best” option from the continuum of utility values in [0, 1).  We use 

closed sets of options in decision problems. 
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Definition: Option  o  O has a local Bayes model P
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With local coherence, only {f,g
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Convexify the option set.   

The locally Bayes mixed strategies  f  (1- )g  are pink 

By Pearce’s Theorem, e.g., the mixed act m = .5f   .5g strictly dominates h. 

Note well that for a coherent choice function  

act m is among the acceptable acts from {f, g, m}  

if and only if   P( 2) = .5 belongs to the IP set P.  
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This observation about the acceptability of a mixed option generalizes. 

 

• Each (arbitrary) IP set of probabilities has its own distinct 

coherent choice function.   

 

• For each two different sets of distributions there is a (finite) 

decision problem where they have distinct coherent choices. 

 

 

 

Application:   

We can represent the IP set of probability distributions that 

make two events independent, since convexity of the IP set is not 

required in our approach. 
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Coherent choice functions may be characterized by axioms on acceptable 

sets that parallel familiar axioms for SEU theory 

 

SEU Coherent Preference  < 

 

Axiom1  < is a weak order. 

 

Axiom2  <  obeys Independence    o1 < o2  iff  xo1 (1-x)o3  < xo2 (1-x)o3 

 

Axiom3  Archimedes 

If o1 < o2 < o3, then  0 < x, y < 1 

xo1 (1-x)o3 <  o2 < yo1 (1-y)o3 

 

1
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Coherent Choice Functions 

(SSK 2010) 
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In place of the ordering axiom, we require the following two conditions: 

 

Axiom 1a – Sen’s (1977) property alpha   

If O2  R(O1) and O1  O3, then O2  R(O3). 

You cannot promote an unacceptable option into an acceptable option by 

adding options to the feasible set. 

 

Axiom 1b – a variant of Aizerman’s 1985 condition   

If O2  R(O1) and O3  O2, then O2  O3  R(closure[O1  O3]). 

You cannot promote an unacceptable option into an acceptable option by 

deleting unacceptable options from the option set.  

 
Note: We require closure of [O1  O3] since O1  O3 may not be a closed set, 

despite the fact that O1 and O3 are closed. 
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The role of mixtures between options is captured in the following 

pair of axioms for  " .   

With  O1 an option set and o an option, the notation  O1 !  (1- )o  

denotes the set of pointwise mixtures,   o1 !  (1- )o  for o1  O1.   
 

Denote by H(O) the closed, convex hull of the option set O, to include 

mixed options. 
 

Axiom 2a – Independence is formulated for the relation "  over sets of 

options.  Specifically, let o be an option and 0 <    1.    

O1 "   O2    if and only if     O1 !  (1-

 )
o

  
O

 O! 
(

1
-

 )
o

Axiom 2a – o

  
 

O
O
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Aside:  Two rival decision theories that have been proposed within IP 

theory each violate a different part of Axiom 2. 

• Independence (Axiom 2a) fails in -Maximin theory.  

-Maximin: Maximize minimum expected utility with respect to 

the distributions P in P.  (See Berger, 1985) 

Note: -Maximin uses only binary comparisons, since it generates a 

(real-valued) ordering of options. 

• Mixing (Axiom 2b) fails for Maximality. 

Maximality: An option o is Maximal if there is no option o  where 

EPU(o ) > EPU(o) for each P in P.  The admissible options are 

those that are Maximal.  (See Walley, 1990.) 

Note: Maximality uses only binary comparisons, also, though it does not 

generate an ordering. 
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The counterpart to Axiom 4 for state-neutrality is captured by the 

following dominance relations.  Introduce two rewards, {1, 0}.   

 

Consider Anscombe-Aumann (1963) horse lotteries h1 and h2, with hi(# j) 

=  " ij1 $  (1-" ij)0;  i = 1, 2  j = 1, …, n. 

Definition:   h2 weakly dominates h1 if "2j   "1j for j = 1, …, n. 

 

Assume that o2 weakly dominates o1, and that a is an option different 

from each of these two. 

Axiom 4a If o2   O and a   R({o1} !  O) then a   R(O). 

Axiom 4b If o1   O and a   R(O) then a   R({o2} !  [O  {o1}]). 
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Main Result on Representation 

A choice function C is coherent  if and only if  it satisfies these (4-pairs of) 

axioms. 

 

A choice function satisfies these axioms if and only if  

it is given by a non-empty set P of global Bayes probability models. 

 

The axioms suffice for representing a choice function with the  

coherence rule for admissibility applied to a (unique) set of  

Probability/Almost-state-independent utility pairs. 

Different sets P are identified with different coherent choice functions. 

  

We offer a sufficient condition for representation using a single, state-

independent utility on rewards. 
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Return to the principal question about consensus. 

• What features of their shared beliefs and values will be reflected in 

their determination of acceptable options as a team?  

 

Proposal:  Preserve unanimity of unacceptable options. 

Note: With binary choice problems, this is equivalent to an 

unrestricted Pareto rule  –   

If everyone strictly prefers o1 over o2, then so does the team. 

 

This proposal results in taking the team’s coherent choice function to be 

the one given by a set of global probabilities, PT , formed by taking the 

union of the experts’ individual sets Pi (i = 1, .., n) of global probabilities:  

PT = i Pi. 
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Allocation rule: Patients were admitted sequentially.  In each case, based 

on an updated IP model for the 5 experts – updated by the data acquired 

to date in the trial – it was determined whether the group of 5 was 

unanimous:  Was one of the two treatments T* Pareto superior for that 

patient. 

 If so, that treatment T* was used. 

 If not, so that relative to the set of 5 updated expert opinions each 

treatment was acceptable with respect to the goal of regulating the 

patient’s mean blood pressure deviation, then the patient was assigned in 

order to make the outcome most informative, e.g., by balancing the legs 

of the trial. 

 

The comparison of prior and posterior favored treatments (after 49 

patients) is reported in the next slide.
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More informative are shifts from prior to posterior predictive means. 

Note:  The allocation rule does not require randomization! 
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2.2  Dilation for IP sets of probabilities –  

some things you rather not know!  [S & W, 1993] 

Let P
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Heuristic Example 

 Suppose A is a highly uncertain event in the added sense of 

“uncertainty” that comes with a set of probabilities P.   

 That is    P*(A)  -  P*(A)    1. 

Let {H,T} indicate the flip of a fair coin whose outcomes are independent of 

A.  That is, P(A,H) = P(A) /2 for each P   P.   Define event E by,  E = {(A,H) 

, (A
c
,T)}.  

 

 

 

 

  

 

 

 

It follows, simply, that P(E) = .5 for each P  P. 

Then     0  P*(E | H) < P*(E)  =  P*(E)  <  P*(E | H)  1 

and     0  P*(E | T) <  P*(E)  =  P*(E)  <  P*(E | T)  1. 
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Dilation creates a new challenge for the design of experiments. 
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Summary of our IP-model of consensus for a team 

• Coherent choice does not reduce to binary comparisons between 

the options available. 

 

• Each two IP sets of probabilities yield different coherent choices. 

• Coherent choice is axiomatized by constraints on choice functions 

that parallel the familiar axioms for coherent (binary) preferences. 

• Experimental design with respect to an IP-set may permit: 

o The shared data to induce a (familiar) merging of posterior 

probabilities and a resulting concentration of the posterior IP-

set. 

OR 

o Dilating the set of IP probabilities, resulting in added 

uncertainty for sure. 

Experimental design for an IP set is not Fisher’s Design of Experiments! 
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